
12
EVALUATION OF RELATIONAL

OPERATORS

Now, here, you see, it takes all the running you can do, to keep in the same place.

If you want to get somewhere else, you must run at least twice as fast as that!

—Lewis Carroll, Through the Looking Glass

The relational operators serve as the building blocks for query evaluation. Queries,

written in a language such as SQL, are presented to a query optimizer, which uses

information about how the data is stored (available in the system catalogs) to produce

an efficient execution plan for evaluating the query. Finding a good execution plan

for a query consists of more than just choosing an implementation for each of the

relational operators that appear in the query. For example, the order in which operators

are applied can influence the cost. Issues in finding a good plan that go beyond

implementation of individual operators are discussed in Chapter 13.

This chapter considers the implementation of individual relational operators. Section

12.1 provides an introduction to query processing, highlighting some common themes

that recur throughout this chapter, and discusses how tuples are retrieved from rela-

tions while evaluating various relational operators. We present implementation alter-

natives for the selection operator in Sections 12.2 and 12.3. It is instructive to see the

variety of alternatives, and the wide variation in performance of these alternatives, for

even such a simple operator. In Section 12.4 we consider the other unary operator in

relational algebra, namely, projection.

We then discuss the implementation of binary operators, beginning with joins in Sec-

tion 12.5. Joins are among the most expensive operators in a relational database

system, and their implementation has a big impact on performance. After discussing

the join operator, we consider implementation of the binary operators cross-product,

intersection, union, and set-difference in Section 12.6. We discuss the implementation

of grouping and aggregate operators, which are extensions of relational algebra, in Sec-

tion 12.7. We conclude with a discussion of how buffer management affects operator

evaluation costs in Section 12.8.

The discussion of each operator is largely independent of the discussion of other oper-

ators. Several alternative implementation techniques are presented for each operator;

the reader who wishes to cover this material in less depth can skip some of these

alternatives without loss of continuity.

319

320 Chapter 12

12.1 INTRODUCTION TO QUERY PROCESSING

One virtue of a relational DBMS is that queries are composed of a few basic operators,

and the implementation of these operators can (and should!) be carefully optimized

for good performance. There are several alternative algorithms for implementing each

relational operator, and for most operators there is no universally superior technique.

Which algorithm is best depends on several factors, including the sizes of the relations

involved, existing indexes and sort orders, the size of the available buffer pool, and the

buffer replacement policy.

The algorithms for various relational operators actually have a lot in common. As this

chapter will demonstrate, a few simple techniques are used to develop algorithms for

each operator:

Iteration: Examine all tuples in input relations iteratively. Sometimes, instead

of examining tuples, we can examine index data entries (which are smaller) that

contain all necessary fields.

Indexing: If a selection or join condition is specified, use an index to examine

just the tuples that satisfy the condition.

Partitioning: By partitioning tuples on a sort key, we can often decompose an

operation into a less expensive collection of operations on partitions. Sorting and

hashing are two commonly used partitioning techniques.

12.1.1 Access Paths

All the algorithms discussed in this chapter have to retrieve tuples from one or more

input relations. There is typically more than one way to retrieve tuples from a relation

because of the availability of indexes and the (possible) presence of a selection condition

in the query that restricts the subset of the relation we need. (The selection condition

can come from a selection operator or from a join.) The alternative ways to retrieve

tuples from a relation are called access paths.

An access path is either (1) a file scan or (2) an index plus a matching selection

condition. Intuitively, an index matches a selection condition if the index can be used

to retrieve just the tuples that satisfy the condition. Consider a simple selection of the

form attr op value, where op is one of the comparison operators <, ≤, =, 6=, ≥, or

>. An index matches such a selection if the index search key is attr and either (1) the

index is a tree index or (2) the index is a hash index and op is equality. We consider

when more complex selection conditions match an index in Section 12.3.

The selectivity of an access path is the number of pages retrieved (index pages plus

data pages) if we use this access path to retrieve all desired tuples. If a relation contains

Evaluation of Relational Operators 321

an index that matches a given selection, there are at least two access paths, namely,

the index and a scan of the data file. The most selective access path is the one that

retrieves the fewest pages; using the most selective access path minimizes the cost of

data retrieval.

12.1.2 Preliminaries: Examples and Cost Calculations

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Reserves(sid: integer, bid: integer, day: dates, rname: string)

This schema is a variant of the one that we used in Chapter 5; we have added a string

field rname to Reserves. Intuitively, this field is the name of the person who has made

the reservation (and may be different from the name of the sailor sid for whom the

reservation was made; a reservation may be made by a person who is not a sailor

on behalf of a sailor). The addition of this field gives us more flexibility in choosing

illustrative examples. We will assume that each tuple of Reserves is 40 bytes long,

that a page can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples.

Similarly, we will assume that each tuple of Sailors is 50 bytes long, that a page can

hold 80 Sailors tuples, and that we have 500 pages of such tuples.

Two points must be kept in mind to understand our discussion of costs:

As discussed in Chapter 8, we consider only I/O costs and measure I/O cost in

terms of the number of page I/Os. We also use big-O notation to express the

complexity of an algorithm in terms of an input parameter and assume that the

reader is familiar with this notation. For example, the cost of a file scan is O(M),

where M is the size of the file.

We discuss several alternate algorithms for each operation. Since each alternative

incurs the same cost in writing out the result, should this be necessary, we will

uniformly ignore this cost in comparing alternatives.

12.2 THE SELECTION OPERATION

In this section we describe various algorithms to evaluate the selection operator. To

motivate the discussion, consider the selection query shown in Figure 12.1, which has

the selection condition rname=‘Joe’.

We can evaluate this query by scanning the entire relation, checking the condition on

each tuple, and adding the tuple to the result if the condition is satisfied. The cost of

this approach is 1,000 I/Os, since Reserves contains 1,000 pages. If there are only a

322 Chapter 12

SELECT *

FROM Reserves R

WHERE R.rname=‘Joe’

Figure 12.1 Simple Selection Query

few tuples with rname=‘Joe’, this approach is expensive because it does not utilize the

selection to reduce the number of tuples retrieved in any way. How can we improve

on this approach? The key is to utilize information in the selection condition and to

use an index if a suitable index is available. For example, a B+ tree index on rname

could be used to answer this query considerably faster, but an index on bid would not

be useful.

In the rest of this section we consider various situations with respect to the file orga-

nization used for the relation and the availability of indexes and discuss appropriate

algorithms for the selection operation. We discuss only simple selection operations of

the form σR.attr op value(R) until Section 12.3, where we consider general selections.

In terms of the general techniques listed in Section 12.1, the algorithms for selection

use either iteration or indexing.

12.2.1 No Index, Unsorted Data

Given a selection of the form σR.attr op value(R), if there is no index on R.attr and R

is not sorted on R.attr, we have to scan the entire relation. Thus, the most selective

access path is a file scan. For each tuple, we must test the condition R.attr op value

and add the tuple to the result if the condition is satisfied.

The cost of this approach is M I/Os, where M is the number of pages in R. In the

example selection from Reserves (Figure 12.1), the cost is 1,000 I/Os.

12.2.2 No Index, Sorted Data

Given a selection of the form σR.attr op value(R), if there is no index on R.attr, but R

is physically sorted on R.attr, we can utilize the sort order by doing a binary search

to locate the first tuple that satisfies the selection condition. Further, we can then

retrieve all tuples that satisfy the selection condition by starting at this location and

scanning R until the selection condition is no longer satisfied. The access method in

this case is a sorted-file scan with selection condition σR.attr op value(R).

For example, suppose that the selection condition is R.attr1 > 5, and that R is sorted

on attr1 in ascending order. After a binary search to locate the position in R corre-

sponding to 5, we simply scan all remaining records.

Evaluation of Relational Operators 323

The cost of the binary search is O(log2M). In addition, we have the cost of the scan to

retrieve qualifying tuples. The cost of the scan depends on the number of such tuples

and can vary from zero to M . In our selection from Reserves (Figure 12.1), the cost

of the binary search is log21, 000 ≈ 10 I/Os.

In practice, it is unlikely that a relation will be kept sorted if the DBMS supports

Alternative (1) for index data entries, that is, allows data records to be stored as index

data entries. If the ordering of data records is important, a better way to maintain it

is through a B+ tree index that uses Alternative (1).

12.2.3 B+ Tree Index

If a clustered B+ tree index is available on R.attr, the best strategy for selection

conditions σR.attr op value(R) in which op is not equality is to use the index. This

strategy is also a good access path for equality selections, although a hash index on

R.attr would be a little better. If the B+ tree index is not clustered, the cost of using

the index depends on the number of tuples that satisfy the selection, as discussed

below.

We can use the index as follows: We search the tree to find the first index entry that

points to a qualifying tuple of R. Then we scan the leaf pages of the index to retrieve

all entries in which the key value satisfies the selection condition. For each of these

entries, we retrieve the corresponding tuple of R. (For concreteness in this discussion,

we will assume that data entries use Alternatives (2) or (3); if Alternative (1) is used,

the data entry contains the actual tuple and there is no additional cost—beyond the

cost of retrieving data entries—for retrieving tuples.)

The cost of identifying the starting leaf page for the scan is typically two or three

I/Os. The cost of scanning the leaf level page for qualifying data entries depends on

the number of such entries. The cost of retrieving qualifying tuples from R depends

on two factors:

The number of qualifying tuples.

Whether the index is clustered. (Clustered and unclustered B+ tree indexes are

illustrated in Figures 11.11 and 11.12. The figures should give the reader a feel

for the impact of clustering, regardless of the type of index involved.)

If the index is clustered, the cost of retrieving qualifying tuples is probably just one

page I/O (since it is likely that all such tuples are contained in a single page). If the

index is not clustered, each index entry could point to a qualifying tuple on a different

page, and the cost of retrieving qualifying tuples in a straightforward way could be one

page I/O per qualifying tuple (unless we get lucky with buffering). We can significantly

reduce the number of I/Os to retrieve qualifying tuples from R by first sorting the rids

324 Chapter 12

(in the index’s data entries) by their page-id component. This sort ensures that when

we bring in a page of R, all qualifying tuples on this page are retrieved one after the

other. The cost of retrieving qualifying tuples is now the number of pages of R that

contain qualifying tuples.

Consider a selection of the form rname < ‘C%’ on the Reserves relation. Assuming

that names are uniformly distributed with respect to the initial letter, for simplicity,

we estimate that roughly 10 percent of Reserves tuples are in the result. This is a total

of 10,000 tuples, or 100 pages. If we have a clustered B+ tree index on the rname field

of Reserves, we can retrieve the qualifying tuples with 100 I/Os (plus a few I/Os to

traverse from the root to the appropriate leaf page to start the scan). However, if the

index is unclustered, we could have up to 10,000 I/Os in the worst case, since each

tuple could cause us to read a page. If we sort the rids of Reserves tuples by the page

number and then retrieve pages of Reserves, we will avoid retrieving the same page

multiple times; nonetheless, the tuples to be retrieved are likely to be scattered across

many more than 100 pages. Therefore, the use of an unclustered index for a range

selection could be expensive; it might be cheaper to simply scan the entire relation

(which is 1,000 pages in our example).

12.2.4 Hash Index, Equality Selection

If a hash index is available on R.attr and op is equality, the best way to implement the

selection σR.attr op value(R) is obviously to use the index to retrieve qualifying tuples.

The cost includes a few (typically one or two) I/Os to retrieve the appropriate bucket

page in the index, plus the cost of retrieving qualifying tuples from R. The cost of

retrieving qualifying tuples from R depends on the number of such tuples and on

whether the index is clustered. Since op is equality, there is exactly one qualifying

tuple if R.attr is a (candidate) key for the relation. Otherwise, we could have several

tuples with the same value in this attribute.

Consider the selection in Figure 12.1. Suppose that there is an unclustered hash index

on the rname attribute, that we have 10 buffer pages, and that there are 100 reserva-

tions made by people named Joe. The cost of retrieving the index page containing the

rids of such reservations is one or two I/Os. The cost of retrieving the 100 Reserves

tuples can vary between 1 and 100, depending on how these records are distributed

across pages of Reserves and the order in which we retrieve these records. If these 100

records are contained in, say, some five pages of Reserves, we have just five additional

I/Os if we sort the rids by their page component. Otherwise, it is possible that we

bring in one of these five pages, then look at some of the other pages, and find that the

first page has been paged out when we need it again. (Remember that several users

and DBMS operations share the buffer pool.) This situation could cause us to retrieve

the same page several times.

Evaluation of Relational Operators 325

12.3 GENERAL SELECTION CONDITIONS *

In our discussion of the selection operation thus far, we have considered selection

conditions of the form σR.attr op value(R). In general a selection condition is a boolean

combination (i.e., an expression using the logical connectives ∧ and ∨) of terms that

have the form attribute op constant or attribute1 op attribute2. For example, if the

WHERE clause in the query shown in Figure 12.1 contained the condition R.rname=‘Joe’

AND R.bid=r, the equivalent algebra expression would be σR.rname=′Joe′∧R.bid=r(R).

In Section 12.3.1 we introduce a standard form for general selection conditions and

define when an index matches such a condition. We consider algorithms for applying

selection conditions without disjunction in Section 12.3.2 and then discuss conditions

with disjunction in Section 12.3.3.

12.3.1 CNF and Index Matching

To process a selection operation with a general selection condition, we first express the

condition in conjunctive normal form (CNF), that is, as a collection of conjuncts

that are connected through the use of the ∧ operator. Each conjunct consists of one

or more terms (of the form described above) connected by ∨.1 Conjuncts that contain

∨ are said to be disjunctive, or to contain disjunction.

As an example, suppose that we have a selection on Reserves with the condition (day

< 8/9/94 ∧ rname = ‘Joe’) ∨ bid=5 ∨ sid=3. We can rewrite this in conjunctive

normal form as (day < 8/9/94 ∨ bid=5 ∨ sid=3) ∧ (rname = ‘Joe’ ∨ bid=5 ∨ sid=3).

We now turn to the issue of when a general selection condition, represented in CNF,

matches an index. The following examples provide some intuition:

If we have a hash index on the search key 〈rname,bid,sid〉, we can use the index to

retrieve just the tuples that satisfy the condition rname=‘Joe’ ∧ bid=5 ∧ sid=3.

The index matches the entire condition rname=‘Joe’ ∧ bid=5 ∧ sid=3. On the

other hand, if the selection condition is rname=‘Joe’ ∧ bid=5, or some condition

on date, this index does not match. That is, it cannot be used to retrieve just the

tuples that satisfy these conditions.

In contrast, if the index were a B+ tree, it would match both rname=‘Joe’ ∧
bid=5 ∧ sid=3 and rname=‘Joe’ ∧ bid=5. However, it would not match bid=5 ∧
sid=3 (since tuples are sorted primarily by rname).

If we have an index (hash or tree) on the search key 〈bid,sid〉 and the selection

condition rname=‘Joe’ ∧ bid=5 ∧ sid=3, we can use the index to retrieve tuples

1Every selection condition can be expressed in CNF. We refer the reader to any standard text on

mathematical logic for the details.

326 Chapter 12

that satisfy bid=5 ∧ sid=3, but the additional condition on rname must then be

applied to each retrieved tuple and will eliminate some of the retrieved tuples from

the result. In this case the index only matches a part of the selection condition

(the part bid=5 ∧ sid=3).

If we have an index on the search key 〈bid, sid〉 and we also have a B+ tree index

on day, the selection condition day < 8/9/94 ∧ bid=5 ∧ sid=3 offers us a choice.

Both indexes match (part of) the selection condition, and we can use either to

retrieve Reserves tuples. Whichever index we use, the conjuncts in the selection

condition that are not matched by the index (e.g., bid=5 ∧ sid=3 if we use the

B+ tree index on day) must be checked for each retrieved tuple.

Generalizing the intuition behind these examples, the following rules define when an

index matches a selection condition that is in CNF:

A hash index matches a selection condition containing no disjunctions if there is

a term of the form attribute=value for each attribute in the index’s search key.

A tree index matches a selection condition containing no disjunctions if there is

a term of the form attribute op value for each attribute in a prefix of the index’s

search key. (〈a〉 and 〈a, b〉 are prefixes of key 〈a, b, c〉, but 〈a, c〉 and 〈b, c〉 are not.)

Note that op can be any comparison; it is not restricted to be equality as it is for

matching selections on a hash index.

The above definition does not address when an index matches a selection with dis-

junctions; we discuss this briefly in Section 12.3.3. As we observed in the examples,

an index could match some subset of the conjuncts in a selection condition (in CNF),

even though it does not match the entire condition. We will refer to the conjuncts that

the index matches as the primary conjuncts in the selection.

The selectivity of an access path obviously depends on the selectivity of the primary

conjuncts in the selection condition (with respect to the index involved).

12.3.2 Evaluating Selections without Disjunction

When the selection does not contain disjunction, that is, it is a conjunction of terms,

we have two evaluation options to consider:

We can retrieve tuples using a file scan or a single index that matches some

conjuncts (and which we estimate to be the most selective access path) and apply

all nonprimary conjuncts in the selection to each retrieved tuple. This approach is

very similar to how we use indexes for simple selection conditions, and we will not

discuss it further. (We emphasize that the number of tuples retrieved depends

on the selectivity of the primary conjuncts in the selection, and the remaining

conjuncts only serve to reduce the cardinality of the result of the selection.)

Evaluation of Relational Operators 327

Intersecting rid sets: Oracle 8 uses several techniques to do rid set intersection

for selections with AND. One is to AND bitmaps. Another is to do a hash join

of indexes. For example, given sal < 5 ∧ price > 30 and indexes on sal and

price, we can join the indexes on the rid column, considering only entries that

satisfy the given selection conditions. Microsoft SQL Server implements rid set

intersection through index joins. IBM DB2 implements intersection of rid sets

using Bloom filters (which are discussed in Section 21.9.2). Sybase ASE does

not do rid set intersection for AND selections; Sybase ASIQ does it using bitmap

operations. Informix also does rid set intersection.

We can try to utilize several indexes. We examine this approach in the rest of this

section.

If several indexes containing data entries with rids (i.e., Alternatives (2) or (3)) match

conjuncts in the selection, we can use these indexes to compute sets of rids of candidate

tuples. We can then intersect these sets of rids, typically by first sorting them, and

then retrieve those records whose rids are in the intersection. If additional conjuncts

are present in the selection, we can then apply these conjuncts to discard some of the

candidate tuples from the result.

As an example, given the condition day < 8/9/94 ∧ bid=5 ∧ sid=3, we can retrieve the

rids of records that meet the condition day < 8/9/94 by using a B+ tree index on day,

retrieve the rids of records that meet the condition sid=3 by using a hash index on sid,

and intersect these two sets of rids. (If we sort these sets by the page id component

to do the intersection, a side benefit is that the rids in the intersection are obtained in

sorted order by the pages that contain the corresponding tuples, which ensures that

we do not fetch the same page twice while retrieving tuples using their rids.) We can

now retrieve the necessary pages of Reserves to retrieve tuples, and check bid=5 to

obtain tuples that meet the condition day < 8/9/94 ∧ bid=5 ∧ sid=3.

12.3.3 Selections with Disjunction

Now let us consider the case that one of the conjuncts in the selection condition is a

disjunction of terms. If even one of these terms requires a file scan because suitable

indexes or sort orders are unavailable, testing this conjunct by itself (i.e., without

taking advantage of other conjuncts) requires a file scan. For example, suppose that

the only available indexes are a hash index on rname and a hash index on sid, and

that the selection condition contains just the (disjunctive) conjunct (day < 8/9/94 ∨
rname=‘Joe’). We can retrieve tuples satisfying the condition rname=‘Joe’ by using

the index on rname. However, day < 8/9/94 requires a file scan. So we might as well

328 Chapter 12

Disjunctions: Microsoft SQL Server considers the use of unions and bitmaps

for dealing with disjunctive conditions. Oracle 8 considers four ways to handle

disjunctive conditions: (1) Convert the query into a union of queries without

OR. (2) If the conditions involve the same attribute, e.g., sal < 5 ∨ sal > 30,

use a nested query with an IN list and an index on the attribute to retrieve

tuples matching a value in the list. (3) Use bitmap operations, e.g., evaluate

sal < 5 ∨ sal > 30 by generating bitmaps for the values 5 and 30 and OR the

bitmaps to find the tuples that satisfy one of the conditions. (We discuss bitmaps

in Chapter 23.) (4) Simply apply the disjunctive condition as a filter on the

set of retrieved tuples. Sybase ASE considers the use of unions for dealing with

disjunctive queries and Sybase ASIQ uses bitmap operations.

do a file scan and check the condition rname=‘Joe’ for each retrieved tuple. Thus, the

most selective access path in this example is a file scan.

On the other hand, if the selection condition is (day < 8/9/94 ∨ rname=‘Joe’) ∧
sid=3, the index on sid matches the conjunct sid=3. We can use this index to find

qualifying tuples and apply day < 8/9/94 ∨ rname=‘Joe’ to just these tuples. The

best access path in this example is the index on sid with the primary conjunct sid=3.

Finally, if every term in a disjunction has a matching index, we can retrieve candidate

tuples using the indexes and then take the union. For example, if the selection condition

is the conjunct (day < 8/9/94 ∨ rname=‘Joe’) and we have B+ tree indexes on day

and rname, we can retrieve all tuples such that day < 8/9/94 using the index on

day, retrieve all tuples such that rname=‘Joe’ using the index on rname, and then

take the union of the retrieved tuples. If all the matching indexes use Alternative (2)

or (3) for data entries, a better approach is to take the union of rids and sort them

before retrieving the qualifying data records. Thus, in the example, we can find rids

of tuples such that day < 8/9/94 using the index on day, find rids of tuples such that

rname=‘Joe’ using the index on rname, take the union of these sets of rids and sort

them by page number, and then retrieve the actual tuples from Reserves. This strategy

can be thought of as a (complex) access path that matches the selection condition (day

< 8/9/94 ∨ rname=‘Joe’).

Most current systems do not handle selection conditions with disjunction efficiently,

and concentrate on optimizing selections without disjunction.

Evaluation of Relational Operators 329

12.4 THE PROJECTION OPERATION

Consider the query shown in Figure 12.2. The optimizer translates this query into the

relational algebra expression πsid,bidReserves. In general the projection operator is of

the form πattr1,attr2,...,attrm(R).

SELECT DISTINCT R.sid, R.bid

FROM Reserves R

Figure 12.2 Simple Projection Query

To implement projection, we have to do the following:

1. Remove unwanted attributes (i.e., those not specified in the projection).

2. Eliminate any duplicate tuples that are produced.

The second step is the difficult one. There are two basic algorithms, one based on

sorting and one based on hashing. In terms of the general techniques listed in Section

12.1, both algorithms are instances of partitioning. While the technique of using an

index to identify a subset of useful tuples is not applicable for projection, the sorting

or hashing algorithms can be applied to data entries in an index, instead of to data

records, under certain conditions described in Section 12.4.4.

12.4.1 Projection Based on Sorting

The algorithm based on sorting has the following steps (at least conceptually):

1. Scan R and produce a set of tuples that contain only the desired attributes.

2. Sort this set of tuples using the combination of all its attributes as the key for

sorting.

3. Scan the sorted result, comparing adjacent tuples, and discard duplicates.

If we use temporary relations at each step, the first step costs M I/Os to scan R, where

M is the number of pages of R, and T I/Os to write the temporary relation, where T

is the number of pages of the temporary; T is O(M). (The exact value of T depends

on the number of fields that are retained and the sizes of these fields.) The second step

costs O(T logT) (which is also O(MlogM), of course). The final step costs T . The

total cost is O(MlogM). The first and third steps are straightforward and relatively

inexpensive. (As noted in the chapter on sorting, the cost of sorting grows linearly

with dataset size in practice, given typical dataset sizes and main memory sizes.)

330 Chapter 12

Consider the projection on Reserves shown in Figure 12.2. We can scan Reserves at

a cost of 1,000 I/Os. If we assume that each tuple in the temporary relation created

in the first step is 10 bytes long, the cost of writing this temporary relation is 250

I/Os. Suppose that we have 20 buffer pages. We can sort the temporary relation in

two passes at a cost of 2 ∗ 2 ∗ 250 = 1, 000 I/Os. The scan required in the third step

costs an additional 250 I/Os. The total cost is 2,500 I/Os.

This approach can be improved on by modifying the sorting algorithm to do projection

with duplicate elimination. Recall the structure of the external sorting algorithm that

we presented in Chapter 11. The very first pass (Pass 0) involves a scan of the records

that are to be sorted to produce the initial set of (internally) sorted runs. Subsequently

one or more passes merge runs. Two important modifications to the sorting algorithm

adapt it for projection:

We can project out unwanted attributes during the first pass (Pass 0) of sorting. If

B buffer pages are available, we can read in B pages of R and write out (T/M)∗B

internally sorted pages of the temporary relation. In fact, with a more aggressive

implementation, we can write out approximately 2 ∗ B internally sorted pages

of the temporary relation on average. (The idea is similar to the refinement of

external sorting that is discussed in Section 11.2.1.)

We can eliminate duplicates during the merging passes. In fact, this modification

will reduce the cost of the merging passes since fewer tuples are written out in

each pass. (Most of the duplicates will be eliminated in the very first merging

pass.)

Let us consider our example again. In the first pass we scan Reserves, at a cost of

1,000 I/Os and write out 250 pages. With 20 buffer pages, the 250 pages are written

out as seven internally sorted runs, each (except the last) about 40 pages long. In the

second pass we read the runs, at a cost of 250 I/Os, and merge them. The total cost is

1,500 I/Os, which is much lower than the cost of the first approach used to implement

projection.

12.4.2 Projection Based on Hashing *

If we have a fairly large number (say, B) of buffer pages relative to the number of pages

of R, a hash-based approach is worth considering. There are two phases: partitioning

and duplicate elimination.

In the partitioning phase we have one input buffer page and B − 1 output buffer pages.

The relation R is read into the input buffer page, one page at a time. The input page is

processed as follows: For each tuple, we project out the unwanted attributes and then

apply a hash function h to the combination of all remaining attributes. The function

h is chosen so that tuples are distributed uniformly to one of B − 1 partitions; there is

Evaluation of Relational Operators 331

one output page per partition. After the projection the tuple is written to the output

buffer page that it is hashed to by h.

At the end of the partitioning phase, we have B − 1 partitions, each of which contains

a collection of tuples that share a common hash value (computed by applying h to all

fields), and have only the desired fields. The partitioning phase is illustrated in Figure

12.3.

INPUT

OUTPUT 1

hash
function

h

B-1

2

B main memory buffersDisk

Original relation Partitions

Disk

B-1

2

1

Figure 12.3 Partitioning Phase of Hash-Based Projection

Two tuples that belong to different partitions are guaranteed not to be duplicates

because they have different hash values. Thus, if two tuples are duplicates, they are in

the same partition. In the duplicate elimination phase, we read in the B− 1 partitions

one at a time to eliminate duplicates. The basic idea is to build an in-memory hash

table as we process tuples in order to detect duplicates.

For each partition produced in the first phase:

1. Read in the partition one page at a time. Hash each tuple by applying hash

function h2 (6= h!) to the combination of all fields and then insert it into an

in-memory hash table. If a new tuple hashes to the same value as some existing

tuple, compare the two to check whether the new tuple is a duplicate. Discard

duplicates as they are detected.

2. After the entire partition has been read in, write the tuples in the hash table

(which is free of duplicates) to the result file. Then clear the in-memory hash

table to prepare for the next partition.

Note that h2 is intended to distribute the tuples in a partition across many buckets, in

order to minimize collisions (two tuples having the same h2 values). Since all tuples

in a given partition have the same h value, h2 cannot be the same as h!

This hash-based projection strategy will not work well if the size of the hash table for a

partition (produced in the partitioning phase) is greater than the number of available

332 Chapter 12

buffer pages B. One way to handle this partition overflow problem is to recursively

apply the hash-based projection technique to eliminate the duplicates in each partition

that overflows. That is, we divide an overflowing partition into subpartitions, then read

each subpartition into memory to eliminate duplicates.

If we assume that h distributes the tuples with perfect uniformity and that the number

of pages of tuples after the projection (but before duplicate elimination) is T , each

partition contains T
B−1

pages. (Note that the number of partitions is B − 1 because

one of the buffer pages is used to read in the relation during the partitioning phase.)

The size of a partition is therefore T
B−1

, and the size of a hash table for a partition is
T

B−1
∗ f ; where f is a fudge factor used to capture the (small) increase in size between

the partition and a hash table for the partition. The number of buffer pages B must

be greater than the partition size T
B−1

∗ f , in order to avoid partition overflow. This

observation implies that we require approximately B >
√

f ∗ T buffer pages.

Now let us consider the cost of hash-based projection. In the partitioning phase, we

read R, at a cost of M I/Os. We also write out the projected tuples, a total of T

pages, where T is some fraction of M , depending on the fields that are projected out.

The cost of this phase is therefore M +T I/Os; the cost of hashing is a CPU cost, and

we do not take it into account. In the duplicate elimination phase, we have to read in

every partition. The total number of pages in all partitions is T . We also write out the

in-memory hash table for each partition after duplicate elimination; this hash table is

part of the result of the projection, and we ignore the cost of writing out result tuples,

as usual. Thus, the total cost of both phases is M +2T . In our projection on Reserves

(Figure 12.2), this cost is 1, 000 + 2 ∗ 250 = 1, 500 I/Os.

12.4.3 Sorting versus Hashing for Projections *

The sorting-based approach is superior to hashing if we have many duplicates or if the

distribution of (hash) values is very nonuniform. In this case, some partitions could

be much larger than average, and a hash table for such a partition would not fit in

memory during the duplicate elimination phase. Also, a useful side effect of using the

sorting-based approach is that the result is sorted. Further, since external sorting is

required for a variety of reasons, most database systems have a sorting utility, which

can be used to implement projection relatively easily. For these reasons, sorting is the

standard approach for projection. And perhaps due to a simplistic use of the sorting

utility, unwanted attribute removal and duplicate elimination are separate steps in

many systems (i.e., the basic sorting algorithm is often used without the refinements

that we outlined).

We observe that if we have B >
√

T buffer pages, where T is the size of the projected

relation before duplicate elimination, both approaches have the same I/O cost. Sorting

takes two passes. In the first pass we read M pages of the original relation and write

Evaluation of Relational Operators 333

Projection in commercial systems: Informix uses hashing. IBM DB2, Oracle

8, and Sybase ASE use sorting. Microsoft SQL Server and Sybase ASIQ implement

both hash-based and sort-based algorithms.

out T pages. In the second pass we read the T pages and output the result of the

projection. Using hashing, in the partitioning phase we read M pages and write T

pages’ worth of partitions. In the second phase, we read T pages and output the

result of the projection. Thus, considerations such as CPU costs, desirability of sorted

order in the result, and skew in the distribution of values drive the choice of projection

method.

12.4.4 Use of Indexes for Projections *

Neither the hashing nor the sorting approach utilizes any existing indexes. An existing

index is useful if the key includes all the attributes that we wish to retain in the

projection. In this case, we can simply retrieve the key values from the index—without

ever accessing the actual relation—and apply our projection techniques to this (much

smaller) set of pages. This technique is called an index-only scan. If we have an

ordered (i.e., a tree) index whose search key includes the wanted attributes as a prefix,

we can do even better: Just retrieve the data entries in order, discarding unwanted

fields, and compare adjacent entries to check for duplicates. The index-only scan

technique is discussed further in Section 14.4.1.

12.5 THE JOIN OPERATION

Consider the following query:

SELECT *

FROM Reserves R, Sailors S

WHERE R.sid = S.sid

This query can be expressed in relational algebra using the join operation: R ⊲⊳ S.

The join operation is one of the most useful operations in relational algebra and is the

primary means of combining information from two or more relations.

Although a join can be defined as a cross-product followed by selections and projections,

joins arise much more frequently in practice than plain cross-products. Further, the

result of a cross-product is typically much larger than the result of a join, so it is very

important to recognize joins and implement them without materializing the underlying

cross-product. Joins have therefore received a lot of attention.

334 Chapter 12

Joins in commercial systems: Sybase ASE supports index nested loop and

sort-merge join. Sybase ASIQ supports page-oriented nested loop, index nested

loop, simple hash, and sort merge join, in addition to join indexes (which we

discuss in Chapter 23). Oracle 8 supports page-oriented nested loops join, sort-

merge join, and a variant of hybrid hash join. IBM DB2 supports block nested

loop, sort-merge, and hybrid hash join. Microsoft SQL Server supports block

nested loops, index nested loops, sort-merge, hash join, and a technique called

hash teams. Informix supports block nested loops, index nested loops, and hybrid

hash join.

We will consider several alternative techniques for implementing joins. We begin by

discussing two algorithms (simple nested loops and block nested loops) that essentially

enumerate all tuples in the cross-product and discard tuples that do not meet the join

conditions. These algorithms are instances of the simple iteration technique mentioned

in Section 12.1.

The remaining join algorithms avoid enumerating the cross-product. They are in-

stances of the indexing and partitioning techniques mentioned in Section 12.1. Intu-

itively, if the join condition consists of equalities, tuples in the two relations can be

thought of as belonging to partitions such that only tuples in the same partition can

join with each other; the tuples in a partition contain the same values in the join

columns. Index nested loops join scans one of the relations and, for each tuple in it,

uses an index on the (join columns of the) second relation to locate tuples in the same

partition. Thus, only a subset of the second relation is compared with a given tuple

of the first relation, and the entire cross-product is not enumerated. The last two

algorithms (sort-merge join and hash join) also take advantage of join conditions to

partition tuples in the relations to be joined and compare only tuples in the same par-

tition while computing the join, but they do not rely on a pre-existing index. Instead,

they either sort or hash the relations to be joined to achieve the partitioning.

We discuss the join of two relations R and S, with the join condition Ri = Sj , using

positional notation. (If we have more complex join conditions, the basic idea behind

each algorithm remains essentially the same. We discuss the details in Section 12.5.4.)

We assume that there are M pages in R with pR tuples per page, and N pages in S

with pS tuples per page. We will use R and S in our presentation of the algorithms,

and the Reserves and Sailors relations for specific examples.

12.5.1 Nested Loops Join

The simplest join algorithm is a tuple-at-a-time nested loops evaluation.

Evaluation of Relational Operators 335

foreach tuple r ∈ R do

foreach tuple s ∈ S do

if ri==sj then add 〈r, s〉 to result

Figure 12.4 Simple Nested Loops Join

We scan the outer relation R, and for each tuple r ∈ R, we scan the entire inner

relation S. The cost of scanning R is M I/Os. We scan S a total of pR ∗M times, and

each scan costs N I/Os. Thus, the total cost is M + pR ∗ M ∗ N .

Suppose that we choose R to be Reserves and S to be Sailors. The value of M is then

1,000, pR is 100, and N is 500. The cost of simple nested loops join is 1, 000 + 100 ∗
1, 000 ∗ 500 page I/Os (plus the cost of writing out the result; we remind the reader

again that we will uniformly ignore this component of the cost). The cost is staggering:

1, 000 + (5 ∗ 107) I/Os. Note that each I/O costs about 10ms on current hardware,

which means that this join will take about 140 hours!

A simple refinement is to do this join page-at-a-time: For each page of R, we can

retrieve each page of S and write out tuples 〈r, s〉 for all qualifying tuples r ∈ R-

page and s ∈ S-page. This way, the cost is M to scan R, as before. However, S is

scanned only M times, and so the total cost is M + M ∗ N . Thus, the page-at-a-time

refinement gives us an improvement of a factor of pR. In the example join of the

Reserves and Sailors relations, the cost is reduced to 1, 000 + 1, 000 ∗ 500 = 501, 000

I/Os and would take about 1.4 hours. This dramatic improvement underscores the

importance of page-oriented operations for minimizing disk I/O.

From these cost formulas a straightforward observation is that we should choose the

outer relation R to be the smaller of the two relations (R ⊲⊳ B = B ⊲⊳ R, as long

as we keep track of field names). This choice does not change the costs significantly,

however. If we choose the smaller relation, Sailors, as the outer relation, the cost of the

page-at-a-time algorithm is 500+500∗1, 000 = 500, 500 I/Os, which is only marginally

better than the cost of page-oriented simple nested loops join with Reserves as the

outer relation.

Block Nested Loops Join

The simple nested loops join algorithm does not effectively utilize buffer pages. Suppose

that we have enough memory to hold the smaller relation, say R, with at least two

extra buffer pages left over. We can read in the smaller relation and use one of the

extra buffer pages to scan the larger relation S. For each tuple s ∈ S, we check R and

output a tuple 〈r, s〉 for qualifying tuples s (i.e., ri = sj). The second extra buffer page

336 Chapter 12

is used as an output buffer. Each relation is scanned just once, for a total I/O cost of

M + N , which is optimal.

If enough memory is available, an important refinement is to build an in-memory hash

table for the smaller relation R. The I/O cost is still M + N , but the CPU cost is

typically much lower with the hash table refinement.

What if we do not have enough memory to hold the entire smaller relation? We can

generalize the preceding idea by breaking the relation R into blocks that can fit into

the available buffer pages and scanning all of S for each block of R. R is the outer

relation, since it is scanned only once, and S is the inner relation, since it is scanned

multiple times. If we have B buffer pages, we can read in B − 2 pages of the outer

relation R and scan the inner relation S using one of the two remaining pages. We can

write out tuples 〈r, s〉, where r ∈ R-block and s ∈ S-page and ri = sj , using the last

buffer page for output.

An efficient way to find matching pairs of tuples (i.e., tuples satisfying the join

condition ri = sj) is to build a main-memory hash table for the block of R. Because a

hash table for a set of tuples takes a little more space than just the tuples themselves,

building a hash table involves a trade-off: the effective block size of R, in terms of

the number of tuples per block, is reduced. Building a hash table is well worth the

effort. The block nested loops algorithm is described in Figure 12.5. Buffer usage in

this algorithm is illustrated in Figure 12.6.

foreach block of B − 2 pages of R do

foreach page of S do {
for all matching in-memory tuples r ∈ R-block and s ∈ S-page,

add 〈r, s〉 to result

}

Figure 12.5 Block Nested Loops Join

The cost of this strategy is M I/Os for reading in R (which is scanned only once).

S is scanned a total of ⌈ M
B−2

⌉ times—ignoring the extra space required per page due

to the in-memory hash table—and each scan costs N I/Os. The total cost is thus

M + N ∗ ⌈ M
B−2

⌉.

Consider the join of the Reserves and Sailors relations. Let us choose Reserves to be

the outer relation R and assume that we have enough buffers to hold an in-memory

hash table for 100 pages of Reserves (with at least two additional buffers, of course).

We have to scan Reserves, at a cost of 1,000 I/Os. For each 100-page block of Reserves,

we have to scan Sailors. Thus we perform 10 scans of Sailors, each costing 500 I/Os.

The total cost is 1, 000 + 10 ∗ 500 = 6, 000 I/Os. If we had only enough buffers to hold

Evaluation of Relational Operators 337

B main memory buffers

l
(k < B-1 pages)

Input buffer Output buffer
(to scan all of S)

Hash table for block R

Join resultRelations R and S

DiskDisk

Figure 12.6 Buffer Usage in Block Nested Loops Join

90 pages of Reserves, we would have to scan Sailors ⌈1, 000/90⌉ = 12 times, and the

total cost would be 1, 000 + 12 ∗ 500 = 7, 000 I/Os.

Suppose we choose Sailors to be the outer relation R instead. Scanning Sailors costs

500 I/Os. We would scan Reserves ⌈500/100⌉ = 5 times. The total cost is 500 + 5 ∗
1, 000 = 5, 500 I/Os. If instead we have only enough buffers for 90 pages of Sailors,

we would scan Reserves a total of ⌈500/90⌉ = 6 times. The total cost in this case is

500+6∗1, 000 = 6, 500 I/Os. We note that the block nested loops join algorithm takes

a little over a minute on our running example, assuming 10ms per I/O as before.

Impact of Blocked Access

If we consider the effect of blocked access to several pages, there is a fundamental

change in the way we allocate buffers for block nested loops. Rather than using just

one buffer page for the inner relation, the best approach is to split the buffer pool

evenly between the two relations. This allocation results in more passes over the inner

relation, leading to more page fetches. However, the time spent on seeking for pages

is dramatically reduced.

The technique of double buffering (discussed in Chapter 11 in the context of sorting)

can also be used, but we will not discuss it further.

Index Nested Loops Join

If there is an index on one of the relations on the join attribute(s), we can take ad-

vantage of the index by making the indexed relation be the inner relation. Suppose

that we have a suitable index on S; Figure 12.7 describes the index nested loops join

algorithm.

338 Chapter 12

foreach tuple r ∈ R do

foreach tuple s ∈ S where ri == sj

add 〈r, s〉 to result

Figure 12.7 Index Nested Loops Join

For each tuple r ∈ R, we use the index to retrieve matching tuples of S. Intuitively, we

compare r only with tuples of S that are in the same partition, in that they have the

same value in the join column. Unlike the other nested loops join algorithms, therefore,

the index nested loops join algorithm does not enumerate the cross-product of R and

S. The cost of scanning R is M , as before. The cost of retrieving matching S tuples

depends on the kind of index and the number of matching tuples; for each R tuple,

the cost is as follows:

1. If the index on S is a B+ tree index, the cost to find the appropriate leaf is

typically 2 to 4 I/Os. If the index is a hash index, the cost to find the appropriate

bucket is 1 or 2 I/Os.

2. Once we find the appropriate leaf or bucket, the cost of retrieving matching S

tuples depends on whether the index is clustered. If it is, the cost per outer tuple

r ∈ R is typically just one more I/O. If it is not clustered, the cost could be one

I/O per matching S-tuple (since each of these could be on a different page in the

worst case).

As an example, suppose that we have a hash-based index using Alternative (2) on

the sid attribute of Sailors and that it takes about 1.2 I/Os on average2 to retrieve

the appropriate page of the index. Since sid is a key for Sailors, we have at most

one matching tuple. Indeed, sid in Reserves is a foreign key referring to Sailors, and

therefore we have exactly one matching Sailors tuple for each Reserves tuple. Let us

consider the cost of scanning Reserves and using the index to retrieve the matching

Sailors tuple for each Reserves tuple. The cost of scanning Reserves is 1,000. There

are 100 ∗ 1, 000 tuples in Reserves. For each of these tuples, retrieving the index

page containing the rid of the matching Sailors tuple costs 1.2 I/Os (on average); in

addition, we have to retrieve the Sailors page containing the qualifying tuple. Thus

we have 100, 000 ∗ (1 + 1.2) I/Os to retrieve matching Sailors tuples. The total cost is

221,000 I/Os.

As another example, suppose that we have a hash-based index using Alternative (2) on

the sid attribute of Reserves. Now we can scan Sailors (500 I/Os) and for each tuple,

use the index to retrieve matching Reserves tuples. We have a total of 80 ∗ 500 Sailors

tuples, and each tuple could match with either zero or more Reserves tuples; a sailor

2This is a typical cost for hash-based indexes.

Evaluation of Relational Operators 339

may have no reservations, or have several. For each Sailors tuple, we can retrieve the

index page containing the rids of matching Reserves tuples (assuming that we have at

most one such index page, which is a reasonable guess) in 1.2 I/Os on average. The

total cost thus far is 500 + 40, 000 ∗ 1.2 = 48, 500 I/Os.

In addition, we have the cost of retrieving matching Reserves tuples. Since we have

100,000 reservations for 40,000 Sailors, assuming a uniform distribution we can estimate

that each Sailors tuple matches with 2.5 Reserves tuples on average. If the index on

Reserves is clustered, and these matching tuples are typically on the same page of

Reserves for a given sailor, the cost of retrieving them is just one I/O per Sailor tuple,

which adds up to 40,000 extra I/Os. If the index is not clustered, each matching

Reserves tuple may well be on a different page, leading to a total of 2.5 ∗ 40, 000 I/Os

for retrieving qualifying tuples. Thus, the total cost can vary from 48, 500 + 40, 000 =

88, 500 to 48, 500+100, 000 = 148, 500 I/Os. Assuming 10ms per I/O, this would take

about 15 to 25 minutes.

Thus, even with an unclustered index, if the number of matching inner tuples for each

outer tuple is small (on average), the cost of the index nested loops join algorithm is

likely to be much less than the cost of a simple nested loops join. The cost difference

can be so great that some systems build an index on the inner relation at run-time if

one does not already exist and do an index nested loops join using the newly created

index.

12.5.2 Sort-Merge Join *

The basic idea behind the sort-merge join algorithm is to sort both relations on the

join attribute and to then look for qualifying tuples r ∈ R and s ∈ S by essentially

merging the two relations. The sorting step groups all tuples with the same value in the

join column together and thus makes it easy to identify partitions, or groups of tuples

with the same value in the join column. We exploit this partitioning by comparing the

R tuples in a partition with only the S tuples in the same partition (rather than with

all S tuples), thereby avoiding enumeration of the cross-product of R and S. (This

partition-based approach works only for equality join conditions.)

The external sorting algorithm discussed in Chapter 11 can be used to do the sorting,

and of course, if a relation is already sorted on the join attribute, we need not sort it

again. We now consider the merging step in detail: We scan the relations R and S,

looking for qualifying tuples (i.e., tuples Tr in R and Ts in S such that Tri = Tsj).

The two scans start at the first tuple in each relation. We advance the scan of R as

long as the current R tuple is less than the current S tuple (with respect to the values

in the join attribute). Similarly, we then advance the scan of S as long as the current

S tuple is less than the current R tuple. We alternate between such advances until we

find an R tuple Tr and a S tuple Ts with Tri = Tsj .

340 Chapter 12

When we find tuples Tr and Ts such that Tri = Tsj , we need to output the joined

tuple. In fact, we could have several R tuples and several S tuples with the same value

in the join attributes as the current tuples Tr and Ts. We refer to these tuples as

the current R partition and the current S partition. For each tuple r in the current R

partition, we scan all tuples s in the current S partition and output the joined tuple

〈r, s〉. We then resume scanning R and S, beginning with the first tuples that follow

the partitions of tuples that we just processed.

The sort-merge join algorithm is shown in Figure 12.8. We assign only tuple values to

the variables Tr, Ts, and Gs and use the special value eof to denote that there are no

more tuples in the relation being scanned. Subscripts identify fields, for example, Tri

denotes the ith field of tuple Tr. If Tr has the value eof , any comparison involving

Tri is defined to evaluate to false.

We illustrate sort-merge join on the Sailors and Reserves instances shown in Figures

12.9 and 12.10, with the join condition being equality on the sid attributes.

These two relations are already sorted on sid, and the merging phase of the sort-merge

join algorithm begins with the scans positioned at the first tuple of each relation

instance. We advance the scan of Sailors, since its sid value, now 22, is less than the

sid value of Reserves, which is now 28. The second Sailors tuple has sid = 28, which is

equal to the sid value of the current Reserves tuple. Therefore, we now output a result

tuple for each pair of tuples, one from Sailors and one from Reserves, in the current

partition (i.e., with sid = 28). Since we have just one Sailors tuple with sid = 28, and

two such Reserves tuples, we write two result tuples. After this step, we position the

scan of Sailors at the first tuple after the partition with sid = 28, which has sid = 31.

Similarly, we position the scan of Reserves at the first tuple with sid = 31. Since these

two tuples have the same sid values, we have found the next matching partition, and

we must write out the result tuples generated from this partition (there are three such

tuples). After this, the Sailors scan is positioned at the tuple with sid = 36, and the

Reserves scan is positioned at the tuple with sid = 58. The rest of the merge phase

proceeds similarly.

In general, we have to scan a partition of tuples in the second relation as often as the

number of tuples in the corresponding partition in the first relation. The first relation

in the example, Sailors, has just one tuple in each partition. (This is not happenstance,

but a consequence of the fact that sid is a key—this example is a key–foreign key join.)

In contrast, suppose that the join condition is changed to be sname=rname. Now, both

relations contain more than one tuple in the partition with sname=rname=‘lubber’.

The tuples with rname=‘lubber’ in Reserves have to be scanned for each Sailors tuple

with sname=‘lubber’.

Evaluation of Relational Operators 341

proc smjoin(R, S, ‘Ri = S′

j)

if R not sorted on attribute i, sort it;

if S not sorted on attribute j, sort it;

Tr = first tuple in R; // ranges over R

Ts = first tuple in S; // ranges over S

Gs = first tuple in S; // start of current S-partition

while Tr 6= eof and Gs 6= eof do {

while Tri < Gsj do

Tr = next tuple in R after Tr; // continue scan of R

while Tri > Gsj do

Gs = next tuple in S after Gs // continue scan of S

Ts = Gs; // Needed in case Tri 6= Gsj

while Tri == Gsj do { // process current R partition

Ts = Gs; // reset S partition scan

while Tsj == Tri do { // process current R tuple

add 〈Tr, Ts〉 to result; // output joined tuples

Ts = next tuple in S after Ts;} // advance S partition scan

Tr = next tuple in R after Tr; // advance scan of R

} // done with current R partition

Gs = Ts; // initialize search for next S partition

}

Figure 12.8 Sort-Merge Join

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

36 lubber 6 36.0

44 guppy 5 35.0

58 rusty 10 35.0

Figure 12.9 An Instance of Sailors

sid bid day rname

28 103 12/04/96 guppy

28 103 11/03/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

Figure 12.10 An Instance of Reserves

342 Chapter 12

Cost of Sort-Merge Join

The cost of sorting R is O(MlogM) and the cost of sorting S is O(NlogN). The

cost of the merging phase is M + N if no S partition is scanned multiple times (or

the necessary pages are found in the buffer after the first pass). This approach is

especially attractive if at least one relation is already sorted on the join attribute or

has a clustered index on the join attribute.

Consider the join of the relations Reserves and Sailors. Assuming that we have 100

buffer pages (roughly the same number that we assumed were available in our discussion

of block nested loops join), we can sort Reserves in just two passes. The first pass

produces 10 internally sorted runs of 100 pages each. The second pass merges these

10 runs to produce the sorted relation. Because we read and write Reserves in each

pass, the sorting cost is 2 ∗ 2 ∗ 1, 000 = 4, 000 I/Os. Similarly, we can sort Sailors in

two passes, at a cost of 2 ∗ 2 ∗ 500 = 2, 000 I/Os. In addition, the second phase of the

sort-merge join algorithm requires an additional scan of both relations. Thus the total

cost is 4, 000 + 2, 000 + 1, 000 + 500 = 7, 500 I/Os, which is similar to the cost of the

block nested loops algorithm.

Suppose that we have only 35 buffer pages. We can still sort both Reserves and Sailors

in two passes, and the cost of the sort-merge join algorithm remains at 7,500 I/Os.

However, the cost of the block nested loops join algorithm is more than 15,000 I/Os.

On the other hand, if we have 300 buffer pages, the cost of the sort-merge join remains

at 7,500 I/Os, whereas the cost of the block nested loops join drops to 2,500 I/Os. (We

leave it to the reader to verify these numbers.)

We note that multiple scans of a partition of the second relation are potentially ex-

pensive. In our example, if the number of Reserves tuples in a repeatedly scanned

partition is small (say, just a few pages), the likelihood of finding the entire partition

in the buffer pool on repeated scans is very high, and the I/O cost remains essentially

the same as for a single scan. However, if there are many pages of Reserves tuples

in a given partition, the first page of such a partition may no longer be in the buffer

pool when we request it a second time (after first scanning all pages in the partition;

remember that each page is unpinned as the scan moves past it). In this case, the

I/O cost could be as high as the number of pages in the Reserves partition times the

number of tuples in the corresponding Sailors partition!

In the worst-case scenario, the merging phase could require us to read all of the second

relation for each tuple in the first relation, and the number of I/Os is O(M ∗N) I/Os!

(This scenario occurs when all tuples in both relations contain the same value in the

join attribute; it is extremely unlikely.)

Evaluation of Relational Operators 343

In practice the I/O cost of the merge phase is typically just a single scan of each

relation. A single scan can be guaranteed if at least one of the relations involved has

no duplicates in the join attribute; this is the case, fortunately, for key–foreign key

joins, which are very common.

A Refinement

We have assumed that the two relations are sorted first and then merged in a distinct

pass. It is possible to improve the sort-merge join algorithm by combining the merging

phase of sorting with the merging phase of the join. First we produce sorted runs

of size B for both R and S. If B >
√

L, where L is the size of the larger relation,

the number of runs per relation is less than
√

L. Suppose that the number of buffers

available for the merging phase is at least 2
√

L, that is, more than the total number

of runs for R and S. We allocate one buffer page for each run of R and one for each

run of S. We then merge the runs of R (to generate the sorted version of R), merge

the runs of S, and merge the resulting R and S streams as they are generated; we

apply the join condition as we merge the R and S streams and discard tuples in the

cross-product that do not meet the join condition.

Unfortunately, this idea increases the number of buffers required to 2
√

L. However,

by using the technique discussed in Section 11.2.1 we can produce sorted runs of size

approximately 2 ∗ B for both R and S. Consequently we have fewer than
√

L/2 runs

of each relation, given the assumption that B >
√

L. Thus, the total number of runs

is less than
√

L, that is, less than B, and we can combine the merging phases with no

need for additional buffers.

This approach allows us to perform a sort-merge join at the cost of reading and writing

R and S in the first pass and of reading R and S in the second pass. The total cost is

thus 3 ∗ (M + N). In our example the cost goes down from 7,500 to 4,500 I/Os.

Blocked Access and Double-Buffering

The blocked I/O and double-buffering optimizations, discussed in Chapter 11 in the

context of sorting, can be used to speed up the merging pass, as well as the sorting of

the relations to be joined; we will not discuss these refinements.

12.5.3 Hash Join *

The hash join algorithm, like the sort-merge join algorithm, identifies partitions in

R and S in a partitioning phase, and in a subsequent probing phase compares

tuples in an R partition only with tuples in the corresponding S partition for testing

equality join conditions. Unlike sort-merge join, hash join uses hashing to identify

344 Chapter 12

partitions, rather than sorting. The partitioning (also called building) phase of hash

join is similar to the partitioning in hash-based projection and is illustrated in Figure

12.3. The probing (sometimes called matching) phase is illustrated in Figure 12.11.

(k < B-1 pages)

Input buffer Output buffer

hash
function

h2

h2 Hash table for partition Ri

(To scan Si)

B main memory buffers

Join result

DiskDisk

Partitions of R and S

Figure 12.11 Probing Phase of Hash Join

The idea is to hash both relations on the join attribute, using the same hash function

h. If we hash each relation (hopefully uniformly) into k partitions, we are assured

that R tuples in partition i can join only with S tuples in the same partition i. This

observation can be used to good effect: We can read in a (complete) partition of the

smaller relation R and scan just the corresponding partition of S for matches. We never

need to consider these R and S tuples again. Thus, once R and S are partitioned, we

can perform the join by reading in R and S just once, provided that enough memory

is available to hold all the tuples in any given partition of R.

In practice we build an in-memory hash table for the R partition, using a hash function

h2 that is different from h (since h2 is intended to distribute tuples in a partition based

on h!), in order to reduce CPU costs. We need enough memory to hold this hash table,

which is a little larger than the R partition itself.

The hash join algorithm is presented in Figure 12.12. (There are several variants

on this idea; the version that we present is called Grace hash join in the literature.)

Consider the cost of the hash join algorithm. In the partitioning phase we have to

scan both R and S once and write them both out once. The cost of this phase is

therefore 2(M + N). In the second phase we scan each partition once, assuming no

partition overflows, at a cost of M + N I/Os. The total cost is therefore 3(M + N),

given our assumption that each partition fits into memory in the second phase. On

our example join of Reserves and Sailors, the total cost is 3 ∗ (500 + 1, 000) = 4, 500

I/Os, and assuming 10ms per I/O, hash join takes under a minute. Compare this with

simple nested loops join, which took about 140 hours—this difference underscores the

importance of using a good join algorithm.

Evaluation of Relational Operators 345

// Partition R into k partitions

foreach tuple r ∈ R do

read r and add it to buffer page h(ri); // flushed as page fills

// Partition S into k partitions

foreach tuple s ∈ S do

read s and add it to buffer page h(sj); // flushed as page fills

// Probing Phase

for l = 1, . . . , k do {

// Build in-memory hash table for Rl, using h2

foreach tuple r ∈ partition Rl do

read r and insert into hash table using h2(ri) ;

// Scan Sl and probe for matching Rl tuples

foreach tuple s ∈ partition Sl do {
read s and probe table using h2(sj);

for matching R tuples r, output 〈r, s〉 };

clear hash table to prepare for next partition;

}

Figure 12.12 Hash Join

Memory Requirements and Overflow Handling

To increase the chances of a given partition fitting into available memory in the probing

phase, we must minimize the size of a partition by maximizing the number of partitions.

In the partitioning phase, to partition R (similarly, S) into k partitions, we need at

least k output buffers and one input buffer. Thus, given B buffer pages, the maximum

number of partitions is k = B − 1. Assuming that partitions are equal in size, this

means that the size of each R partition is M
B−1

(as usual, M is the number of pages

of R). The number of pages in the (in-memory) hash table built during the probing

phase for a partition is thus f∗M

B−1
, where f is a fudge factor used to capture the (small)

increase in size between the partition and a hash table for the partition.

During the probing phase, in addition to the hash table for the R partition, we require

a buffer page for scanning the S partition, and an output buffer. Therefore, we require

B > f∗M

B−1
+ 2. We need approximately B >

√
f ∗ M for the hash join algorithm to

perform well.

346 Chapter 12

Since the partitions of R are likely to be close in size, but not identical, the largest

partition will be somewhat larger than M
B−1

, and the number of buffer pages required

is a little more than B >
√

f ∗ M . There is also the risk that if the hash function

h does not partition R uniformly, the hash table for one or more R partitions may

not fit in memory during the probing phase. This situation can significantly degrade

performance.

As we observed in the context of hash-based projection, one way to handle this partition

overflow problem is to recursively apply the hash join technique to the join of the

overflowing R partition with the corresponding S partition. That is, we first divide

the R and S partitions into subpartitions. Then we join the subpartitions pairwise.

All subpartitions of R will probably fit into memory; if not, we apply the hash join

technique recursively.

Utilizing Extra Memory: Hybrid Hash Join

The minimum amount of memory required for hash join is B >
√

f ∗ M . If more

memory is available, a variant of hash join called hybrid hash join offers better

performance. Suppose that B > f ∗ (M/k), for some integer k. This means that if we

divide R into k partitions of size M/k, an in-memory hash table can be built for each

partition. To partition R (similarly, S) into k partitions, we need k output buffers and

one input buffer, that is, k + 1 pages. This leaves us with B − (k + 1) extra pages

during the partitioning phase.

Suppose that B − (k + 1) > f ∗ (M/k). That is, we have enough extra memory during

the partitioning phase to hold an in-memory hash table for a partition of R. The idea

behind hybrid hash join is to build an in-memory hash table for the first partition of R

during the partitioning phase, which means that we don’t write this partition to disk.

Similarly, while partitioning S, rather than write out the tuples in the first partition

of S, we can directly probe the in-memory table for the first R partition and write out

the results. At the end of the partitioning phase, we have completed the join of the

first partitions of R and S, in addition to partitioning the two relations; in the probing

phase, we join the remaining partitions as in hash join.

The savings realized through hybrid hash join is that we avoid writing the first par-

titions of R and S to disk during the partitioning phase and reading them in again

during the probing phase. Consider our example, with 500 pages in the smaller relation

R and 1,000 pages in S.3 If we have B = 300 pages, we can easily build an in-memory

hash table for the first R partition while partitioning R into two partitions. During the

partitioning phase of R, we scan R and write out one partition; the cost is 500 + 250

3It is unfortunate that in our running example, the smaller relation, which we have denoted by

the variable R in our discussion of hash join, is in fact the Sailors relation, which is more naturally

denoted by S!

Evaluation of Relational Operators 347

if we assume that the partitions are of equal size. We then scan S and write out one

partition; the cost is 1, 000 + 500. In the probing phase, we scan the second partition

of R and of S; the cost is 250 + 500. The total cost is 750 + 1, 500 + 750 = 3, 000. In

contrast, the cost of hash join is 4, 500.

If we have enough memory to hold an in-memory hash table for all of R, the savings are

even greater. For example, if B > f ∗N +2, that is, k = 1, we can build an in-memory

hash table for all of R. This means that we only read R once, to build this hash table,

and read S once, to probe the R hash table. The cost is 500 + 1, 000 = 1, 500.

Hash Join versus Block Nested Loops Join

While presenting the block nested loops join algorithm, we briefly discussed the idea of

building an in-memory hash table for the inner relation. We now compare this (more

CPU-efficient) version of block nested loops join with hybrid hash join.

If a hash table for the entire smaller relation fits in memory, the two algorithms are

identical. If both relations are large relative to the available buffer size, we require

several passes over one of the relations in block nested loops join; hash join is a more

effective application of hashing techniques in this case. The I/O that is saved in this

case by using the hash join algorithm in comparison to a block nested loops join is

illustrated in Figure 12.13. In the latter, we read in all of S for each block of R; the I/O

cost corresponds to the whole rectangle. In the hash join algorithm, for each block of

R, we read only the corresponding block of S; the I/O cost corresponds to the shaded

areas in the figure. This difference in I/O due to scans of S is highlighted in the figure.

R1

R4

S1 S2 S4 S5S3

R2

R3

R5

Figure 12.13 Hash Join versus Block Nested Loops for Large Relations

We note that this picture is rather simplistic. It does not capture the cost of scanning

R in block nested loops join and the cost of the partitioning phase in hash join, and it

focuses on the cost of the probing phase.

348 Chapter 12

Hash Join versus Sort-Merge Join

Let us compare hash join with sort-merge join. If we have B >
√

M buffer pages, where

M is the number of pages in the smaller relation, and we assume uniform partitioning,

the cost of hash join is 3(M + N) I/Os. If we have B >
√

N buffer pages, where N is

the number of pages in the larger relation, the cost of sort-merge join is also 3(M +N),

as discussed in Section 12.5.2. A choice between these techniques is therefore governed

by other factors, notably:

If the partitions in hash join are not uniformly sized, hash join could cost more.

Sort-merge join is less sensitive to such data skew.

If the available number of buffers falls between
√

M and
√

N , hash join costs less

than sort-merge join, since we need only enough memory to hold partitions of the

smaller relation, whereas in sort-merge join the memory requirements depend on

the size of the larger relation. The larger the difference in size between the two

relations, the more important this factor becomes.

Additional considerations include the fact that the result is sorted in sort-merge

join.

12.5.4 General Join Conditions *

We have discussed several join algorithms for the case of a simple equality join con-

dition. Other important cases include a join condition that involves equalities over

several attributes and inequality conditions. To illustrate the case of several equalities,

we consider the join of Reserves R and Sailors S with the join condition R.sid=S.sid

∧ R.rname=S.sname:

For index nested loops join, we can build an index on Reserves on the combination

of fields 〈R.sid, R.rname〉 and treat Reserves as the inner relation. We can also

use an existing index on this combination of fields, or on R.sid, or on R.rname.

(Similar remarks hold for the choice of Sailors as the inner relation, of course.)

For sort-merge join, we sort Reserves on the combination of fields 〈sid, rname〉
and Sailors on the combination of fields 〈sid, sname〉. Similarly, for hash join, we

partition on these combinations of fields.

The other join algorithms that we discussed are essentially unaffected.

If we have an inequality comparison, for example, a join of Reserves R and Sailors S

with the join condition R.rname < S.sname:

We require a B+ tree index for index nested loops join.

Evaluation of Relational Operators 349

Hash join and sort-merge join are not applicable.

The other join algorithms that we discussed are essentially unaffected.

Of course, regardless of the algorithm, the number of qualifying tuples in an inequality

join is likely to be much higher than in an equality join.

We conclude our presentation of joins with the observation that there is no join algo-

rithm that is uniformly superior to the others. The choice of a good algorithm depends

on the sizes of the relations being joined, available access methods, and the size of the

buffer pool. This choice can have a considerable impact on performance because the

difference between a good and a bad algorithm for a given join can be enormous.

12.6 THE SET OPERATIONS *

We now briefly consider the implementation of the set operations R∩S, R×S, R∪S,

and R − S. From an implementation standpoint, intersection and cross-product can

be seen as special cases of join (with equality on all fields as the join condition for

intersection, and with no join condition for cross-product). Therefore, we will not

discuss them further.

The main point to address in the implementation of union is the elimination of du-

plicates. Set-difference can also be implemented using a variation of the techniques

for duplicate elimination. (Union and difference queries on a single relation can be

thought of as a selection query with a complex selection condition. The techniques

discussed in Section 12.3 are applicable for such queries.)

There are two implementation algorithms for union and set-difference, again based

on sorting and hashing. Both algorithms are instances of the partitioning technique

mentioned in Section 12.1.

12.6.1 Sorting for Union and Difference

To implement R ∪ S:

1. Sort R using the combination of all fields; similarly, sort S.

2. Scan the sorted R and S in parallel and merge them, eliminating duplicates.

As a refinement, we can produce sorted runs of R and S and merge these runs in

parallel. (This refinement is similar to the one discussed in detail for projection.) The

implementation of R − S is similar. During the merging pass, we write only tuples of

R to the result, after checking that they do not appear in S.

350 Chapter 12

12.6.2 Hashing for Union and Difference

To implement R ∪ S:

1. Partition R and S using a hash function h.

2. Process each partition l as follows:

Build an in-memory hash table (using hash function h2 6= h) for Sl.

Scan Rl. For each tuple, probe the hash table for Sl. If the tuple is in the

hash table, discard it; otherwise, add it to the table.

Write out the hash table and then clear it to prepare for the next partition.

To implement R − S, we proceed similarly. The difference is in the processing of a

partition. After building an in-memory hash table for Sl, we scan Rl. For each Rl

tuple, we probe the hash table; if the tuple is not in the table, we write it to the result.

12.7 AGGREGATE OPERATIONS *

The SQL query shown in Figure 12.14 involves an aggregate operation, AVG. The other

aggregate operations supported in SQL-92 are MIN, MAX, SUM, and COUNT.

SELECT AVG(S.age)

FROM Sailors S

Figure 12.14 Simple Aggregation Query

The basic algorithm for aggregate operators consists of scanning the entire Sailors

relation and maintaining some running information about the scanned tuples; the

details are straightforward. The running information for each aggregate operation is

shown in Figure 12.15. The cost of this operation is the cost of scanning all Sailors

tuples.

Aggregate Operation Running Information

SUM Total of the values retrieved

AVG 〈Total, Count〉 of the values retrieved

COUNT Count of values retrieved

MIN Smallest value retrieved

MAX Largest value retrieved

Figure 12.15 Running Information for Aggregate Operations

Aggregate operators can also be used in combination with a GROUP BY clause. If we

add GROUP BY rating to the query in Figure 12.14, we would have to compute the

Evaluation of Relational Operators 351

average age of sailors for each rating group. For queries with grouping, there are two

good evaluation algorithms that do not rely on an existing index; one algorithm is

based on sorting and the other is based on hashing. Both algorithms are instances of

the partitioning technique mentioned in Section 12.1.

The sorting approach is simple—we sort the relation on the grouping attribute (rating)

and then scan it again to compute the result of the aggregate operation for each

group. The second step is similar to the way we implement aggregate operations

without grouping, with the only additional point being that we have to watch for

group boundaries. (It is possible to refine the approach by doing aggregation as part

of the sorting step; we leave this as an exercise for the reader.) The I/O cost of this

approach is just the cost of the sorting algorithm.

In the hashing approach we build a hash table (in main memory if possible) on the

grouping attribute. The entries have the form 〈grouping-value, running-info〉. The

running information depends on the aggregate operation, as per the discussion of

aggregate operations without grouping. As we scan the relation, for each tuple, we

probe the hash table to find the entry for the group to which the tuple belongs and

update the running information. When the hash table is complete, the entry for a

grouping value can be used to compute the answer tuple for the corresponding group

in the obvious way. If the hash table fits in memory, which is likely because each entry

is quite small and there is only one entry per grouping value, the cost of the hashing

approach is O(M), where M is the size of the relation.

If the relation is so large that the hash table does not fit in memory, we can parti-

tion the relation using a hash function h on grouping-value. Since all tuples with a

given grouping-value are in the same partition, we can then process each partition

independently by building an in-memory hash table for the tuples in it.

12.7.1 Implementing Aggregation by Using an Index

The technique of using an index to select a subset of useful tuples is not applicable for

aggregation. However, under certain conditions we can evaluate aggregate operations

efficiently by using the data entries in an index instead of the data records:

If the search key for the index includes all the attributes needed for the aggregation

query, we can apply the techniques described earlier in this section to the set of

data entries in the index, rather than to the collection of data records, and thereby

avoid fetching data records.

If the GROUP BY clause attribute list forms a prefix of the index search key and the

index is a tree index, we can retrieve data entries (and data records, if necessary)

in the order required for the grouping operation, and thereby avoid a sorting step.

352 Chapter 12

A given index may support one or both of these techniques; both are examples of index-

only plans. We discuss the use of indexes for queries with grouping and aggregation in

the context of queries that also include selections and projections in Section 14.4.1.

12.8 THE IMPACT OF BUFFERING *

In implementations of relational operators, effective use of the buffer pool is very

important, and we explicitly considered the size of the buffer pool in determining

algorithm parameters for several of the algorithms that we discussed. There are three

main points to note:

1. If several operations execute concurrently, they share the buffer pool. This effec-

tively reduces the number of buffer pages available for each operation.

2. If tuples are accessed using an index, especially an unclustered index, the likelihood

of finding a page in the buffer pool if it is requested multiple times depends (in

a rather unpredictable way, unfortunately) on the size of the buffer pool and the

replacement policy. Further, if tuples are accessed using an unclustered index,

each tuple retrieved is likely to require us to bring in a new page; thus, the buffer

pool fills up quickly, leading to a high level of paging activity.

3. If an operation has a pattern of repeated page accesses, we can increase the like-

lihood of finding a page in memory by a good choice of replacement policy or by

reserving a sufficient number of buffers for the operation (if the buffer manager

provides this capability). Several examples of such patterns of repeated access

follow:

Consider a simple nested loops join. For each tuple of the outer relation,

we repeatedly scan all pages in the inner relation. If we have enough buffer

pages to hold the entire inner relation, the replacement policy is irrelevant.

Otherwise, the replacement policy becomes critical. With LRU we will never

find a page when it is requested, because it is paged out. This is the sequential

flooding problem that we discussed in Section 7.4.1. With MRU we obtain

the best buffer utilization—the first B − 2 pages of the inner relation always

remain in the buffer pool. (B is the number of buffer pages; we use one page

for scanning the outer relation,4 and always replace the last page used for

scanning the inner relation.)

In a block nested loops join, for each block of the outer relation, we scan the

entire inner relation. However, since only one unpinned page is available for

the scan of the inner relation, the replacement policy makes no difference.

In an index nested loops join, for each tuple of the outer relation, we use the

index to find matching inner tuples. If several tuples of the outer relation

4Think about the sequence of pins and unpins used to achieve this.

Evaluation of Relational Operators 353

have the same value in the join attribute, there is a repeated pattern of access

on the inner relation; we can maximize the repetition by sorting the outer

relation on the join attributes.

12.9 POINTS TO REVIEW

Queries are composed of a few basic operators whose implementation impacts

performance. All queries need to retrieve tuples from one or more input relations.

The alternative ways of retrieving tuples from a relation are called access paths.

An index matches selection conditions in a query if the index can be used to only

retrieve tuples that satisfy the selection conditions. The selectivity of an access

path with respect to a query is the total number of pages retrieved using the access

path for this query. (Section 12.1)

Consider a simple selection query of the form σR.attr op value(R). If there is no

index and the file is not sorted, the only access path is a file scan. If there is no

index but the file is sorted, a binary search can find the first occurrence of a tuple

in the query. If a B+ tree index matches the selection condition, the selectivity

depends on whether the index is clustered or unclustered and the number of result

tuples. Hash indexes can be used only for equality selections. (Section 12.2)

General selection conditions can be expressed in conjunctive normal form, where

each conjunct consists of one or more terms. Conjuncts that contain ∨ are called

disjunctive. A more complicated rule can be used to determine whether a general

selection condition matches an index. There are several implementation options

for general selections. (Section 12.3)

The projection operation can be implemented by sorting and duplicate elimina-

tion during the sorting step. Another, hash-based implementation first partitions

the file according to a hash function on the output attributes. Two tuples that

belong to different partitions are guaranteed not to be duplicates because they

have different hash values. In a subsequent step each partition is read into main

memory and within-partition duplicates are eliminated. If an index contains all

output attributes, tuples can be retrieved solely from the index. This technique

is called an index-only scan. (Section 12.4)

Assume that we join relations R and S. In a nested loops join, the join condition

is evaluated between each pair of tuples from R and S. A block nested loops join

performs the pairing in a way that minimizes the number of disk accesses. An

index nested loops join fetches only matching tuples from S for each tuple of R by

using an index. A sort-merge join sorts R and S on the join attributes using an

external merge sort and performs the pairing during the final merge step. A hash

join first partitions R and S using a hash function on the join attributes. Only

partitions with the same hash values need to be joined in a subsequent step. A

hybrid hash join extends the basic hash join algorithm by making more efficient

354 Chapter 12

use of main memory if more buffer pages are available. Since a join is a very

expensive, but common operation, its implementation can have great impact on

overall system performance. The choice of the join implementation depends on

the number of buffer pages available and the sizes of R and S. (Section 12.5)

The set operations R ∩ S, R × S, R ∪ S, and R − S can be implemented using

sorting or hashing. In sorting, R and S are first sorted and the set operation is

performed during a subsequent merge step. In a hash-based implementation, R

and S are first partitioned according to a hash function. The set operation is

performed when processing corresponding partitions. (Section 12.6)

Aggregation can be performed by maintaining running information about the tu-

ples. Aggregation with grouping can be implemented using either sorting or hash-

ing with the grouping attribute determining the partitions. If an index contains

sufficient information for either simple aggregation or aggregation with grouping,

index-only plans that do not access the actual tuples are possible. (Section 12.7)

The number of buffer pool pages available —influenced by the number of operators

being evaluated concurrently—and their effective use has great impact on the

performance of implementations of relational operators. If an operation has a

regular pattern of page accesses, choice of a good buffer pool replacement policy

can influence overall performance. (Section 12.8)

EXERCISES

Exercise 12.1 Briefly answer the following questions:

1. Consider the three basic techniques, iteration, indexing, and partitioning, and the re-

lational algebra operators selection, projection, and join. For each technique–operator

pair, describe an algorithm based on the technique for evaluating the operator.

2. Define the term most selective access path for a query.

3. Describe conjunctive normal form, and explain why it is important in the context of

relational query evaluation.

4. When does a general selection condition match an index? What is a primary term in a

selection condition with respect to a given index?

5. How does hybrid hash join improve upon the basic hash join algorithm?

6. Discuss the pros and cons of hash join, sort-merge join, and block nested loops join.

7. If the join condition is not equality, can you use sort-merge join? Can you use hash join?

Can you use index nested loops join? Can you use block nested loops join?

8. Describe how to evaluate a grouping query with aggregation operator MAX using a sorting-

based approach.

9. Suppose that you are building a DBMS and want to add a new aggregate operator called

SECOND LARGEST, which is a variation of the MAX operator. Describe how you would

implement it.

Evaluation of Relational Operators 355

10. Give an example of how buffer replacement policies can affect the performance of a join

algorithm.

Exercise 12.2 Consider a relation R(a,b,c,d,e) containing 5,000,000 records, where each data

page of the relation holds 10 records. R is organized as a sorted file with dense secondary

indexes. Assume that R.a is a candidate key for R, with values lying in the range 0 to

4,999,999, and that R is stored in R.a order. For each of the following relational algebra

queries, state which of the following three approaches is most likely to be the cheapest:

Access the sorted file for R directly.

Use a (clustered) B+ tree index on attribute R.a.

Use a linear hashed index on attribute R.a.

1. σa<50,000(R)

2. σa=50,000(R)

3. σa>50,000∧a<50,010(R)

4. σa6=50,000(R)

Exercise 12.3 Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E

You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of

the same length.

The ename attribute is a candidate key.

The relation contains 10,000 pages.

There are 10 buffer pages.

Consider the optimized version of the sorting-based projection algorithm: The initial sorting

pass reads the input relation and creates sorted runs of tuples containing only attributes ename

and title. Subsequent merging passes eliminate duplicates while merging the initial runs to

obtain a single sorted result (as opposed to doing a separate pass to eliminate duplicates from

a sorted result containing duplicates).

1. How many sorted runs are produced in the first pass? What is the average length of

these runs? (Assume that memory is utilized well and that any available optimization

to increase run size is used.) What is the I/O cost of this sorting pass?

2. How many additional merge passes will be required to compute the final result of the

projection query? What is the I/O cost of these additional passes?

3. (a) Suppose that a clustered B+ tree index on title is available. Is this index likely to

offer a cheaper alternative to sorting? Would your answer change if the index were

unclustered? Would your answer change if the index were a hash index?

(b) Suppose that a clustered B+ tree index on ename is available. Is this index likely

to offer a cheaper alternative to sorting? Would your answer change if the index

were unclustered? Would your answer change if the index were a hash index?

356 Chapter 12

(c) Suppose that a clustered B+ tree index on 〈ename, title〉 is available. Is this index

likely to offer a cheaper alternative to sorting? Would your answer change if the

index were unclustered? Would your answer change if the index were a hash index?

4. Suppose that the query is as follows:

SELECT E.title, E.ename FROM Executives E

That is, you are not required to do duplicate elimination. How would your answers to

the previous questions change?

Exercise 12.4 Consider the join R⊲⊳R.a=S.bS, given the following information about the

relations to be joined. The cost metric is the number of page I/Os unless otherwise noted,

and the cost of writing out the result should be uniformly ignored.

Relation R contains 10,000 tuples and has 10 tuples per page.

Relation S contains 2,000 tuples and also has 10 tuples per page.

Attribute b of relation S is the primary key for S.

Both relations are stored as simple heap files.

Neither relation has any indexes built on it.

52 buffer pages are available.

1. What is the cost of joining R and S using a page-oriented simple nested loops join? What

is the minimum number of buffer pages required for this cost to remain unchanged?

2. What is the cost of joining R and S using a block nested loops join? What is the minimum

number of buffer pages required for this cost to remain unchanged?

3. What is the cost of joining R and S using a sort-merge join? What is the minimum

number of buffer pages required for this cost to remain unchanged?

4. What is the cost of joining R and S using a hash join? What is the minimum number of

buffer pages required for this cost to remain unchanged?

5. What would be the lowest possible I/O cost for joining R and S using any join algorithm,

and how much buffer space would be needed to achieve this cost? Explain briefly.

6. How many tuples will the join of R and S produce, at most, and how many pages would

be required to store the result of the join back on disk?

7. Would your answers to any of the previous questions in this exercise change if you are

told that R.a is a foreign key that refers to S.b?

Exercise 12.5 Consider the join of R and S described in Exercise 12.4.

1. With 52 buffer pages, if unclustered B+ indexes existed on R.a and S.b, would either

provide a cheaper alternative for performing the join (using an index nested loops join)

than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2,000 tuples?

2. With 52 buffer pages, if clustered B+ indexes existed on R.a and S.b, would either provide

a cheaper alternative for performing the join (using the index nested loops algorithm)

than a block nested loops join? Explain.

Evaluation of Relational Operators 357

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2,000 tuples?

3. If only 15 buffers were available, what would be the cost of a sort-merge join? What

would be the cost of a hash join?

4. If the size of S were increased to also be 10,000 tuples, but only 15 buffer pages were

available, what would be the cost of a sort-merge join? What would be the cost of a

hash join?

5. If the size of S were increased to also be 10,000 tuples, and 52 buffer pages were available,

what would be the cost of sort-merge join? What would be the cost of hash join?

Exercise 12.6 Answer each of the questions—if some question is inapplicable, explain why—

in Exercise 12.4 again, but using the following information about R and S:

Relation R contains 200,000 tuples and has 20 tuples per page.

Relation S contains 4,000,000 tuples and also has 20 tuples per page.

Attribute a of relation R is the primary key for R.

Each tuple of R joins with exactly 20 tuples of S.

1,002 buffer pages are available.

Exercise 12.7 We described variations of the join operation called outer joins in Section

5.6.4. One approach to implementing an outer join operation is to first evaluate the corre-

sponding (inner) join and then add additional tuples padded with null values to the result

in accordance with the semantics of the given outer join operator. However, this requires us

to compare the result of the inner join with the input relations to determine the additional

tuples to be added. The cost of this comparison can be avoided by modifying the join al-

gorithm to add these extra tuples to the result while input tuples are processed during the

join. Consider the following join algorithms: block nested loops join, index nested loops join,

sort-merge join, and hash join. Describe how you would modify each of these algorithms to

compute the following operations on the Sailors and Reserves tables discussed in this chapter:

1. Sailors NATURAL LEFT OUTER JOIN Reserves

2. Sailors NATURAL RIGHT OUTER JOIN Reserves

3. Sailors NATURAL FULL OUTER JOIN Reserves

PROJECT-BASED EXERCISES

Exercise 12.8 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix B.) Implement the various join algorithms described in this chapter

in Minibase. (As additional exercises, you may want to implement selected algorithms for the

other operators as well.)

358 Chapter 12

BIBLIOGRAPHIC NOTES

The implementation techniques used for relational operators in System R are discussed in

[88]. The implementation techniques used in PRTV, which utilized relational algebra trans-

formations and a form of multiple-query optimization, are discussed in [303]. The techniques

used for aggregate operations in Ingres are described in [209]. [275] is an excellent survey of

algorithms for implementing relational operators and is recommended for further reading.

Hash-based techniques are investigated (and compared with sort-based techniques) in [93],

[187], [276], and [588]. Duplicate elimination was discussed in [86]. [238] discusses secondary

storage access patterns arising in join implementations. Parallel algorithms for implementing

relational operations are discussed in [86, 141, 185, 189, 196, 251, 464].

